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In this paper deformational anisotropy is meant to be that anisotropy 

which develops in a body as a result of its elastic deformation. Con- 

sidered is the problem of the state of stress in a body subjected, 

from a “natural” state, to two consecutive elastic deformations. It 

is shown, that if the first defcrmation is homogeneous and different 

from a hydrostatic tension or compression, then with the application 

of a second deformation the body deforms in general as an orthotropic 

one: the principal directions of elasticity coincide with the 

principal axes of the homogeneous deformation, and the elastic con- 

stants of this body can be expressed in terms of the elastic 

constants of the original isotropic body and its principal elonga- 

tions in first deformation. Thus, in solving this problem, the possi- 

bility is opened to use the theory of elasticity of anisotropic 

bodies. As applications, torsion of an elongated bar and bending of 

an extended and sheared plate are considered. 

1. Notation 

&fore and after its deformation, the body is referred to three fixed 

and mutually perpendicular axes 1,2 and 3. The coordinates of any point 

of the body before the first deformation (in the nnaturaln state) are 

designated Ly xi(here, and in what follows, i = 1,2,3). The coordinates 

of this point after the first deformation (in the llinitial” state, since 

this is what it is for the second deformation) are designate4 by yi. The 

first deformation is characterized by displacements U. 
1’ 

such that yi 7 

xi + ui (Fig.1). The components of the first deformation are tletermined 

Lv formulas t 1,2 I . 
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The second deformation is characterized by displacements of points 

of the body after the first deformation. The components of the second 

deformation are determined by formulas 

(1.2) 

The total deformation, as a result of the first and second deforma- 

tions, is ‘given by displacements wi = ui + vi of points of a body from 

their position in the natural state. The components of the total 

deformation are defined by formulas 

(‘I-, k, I’ = 1, 2, a) (1.3) 

The components of stress after two deformations are u. .=u. .‘+o .” . 
‘.l t.l ‘1 

IIere “ij’ indicate the stresses corresponding to displacements Ui. 

These are called “initialn stresses, since this is what they are for the 

second deformation; u ” indicate stresses corresponding to displace- 

ments pi’ These shall “J, e called Wsecondaryn stresses. 

2. First deformation 

‘Ihe first deformation is assumed to be homogeneous and pure. Generally 

in this case, the displacements of a point of the body will be u1 = 01 x1, 

u2 
= o/2x2) la3 = ci3x3, if the axes of coordinates 1,2,3 (see Section 1 3 

are directed parallel with the principal axes of deformation. ‘Ihe 

coefficients ‘i = Jui/axi are the principal elongations. The coordinates 

of the point after deformation and the principal components of strain 

will be, respectively 

Yl = (1 + al)%, Y2 = (I +a2>z2, y3=(1 +a3)r3 (2.1) 
e, = 2al + a12, e2 = 2a2 + az2, c3 = 2a, -j- as2 

The retention of quadratic terms, in the last expressions above, in- 

dicates that the first deformation is not asumed to be small, as in the 

linear theory of elasticity; thus, on the basis of certain considera- 

tions, it is necessary to take second-order effects into account in this 

deformation. 

The invariants of strain are given by 

J,, = eln + e2n + e3n (r&=1,2,3,..) (2.4 
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derived from expressions 

‘J1 = ell + ea2 + e33, J2 = el12 + epa2 + e332 + 2e2,2 + 2e312 + 2e122 (2.3) 
JS = ed + e22+ es33 + 3k (e 122 + e3?) + se22 b22 + e292) + 

+ 3es3 h2 + ~~3~) + 6e2s2c+2 

in which the components of strain with different subscripts are set 

equal to zero, and eii is denoted by ei+ 

In the linear theory of elasticity, the principal stresses and the 

elastic potential (density of the potential strain energy @, referred 

to a unit volume before deformation) are related by 

ci = he + &L&i, (ID = $J?f FJ2, a@ f3CD ,i = 2 a,,- = -- aai (2.4) 
t 

where 0 = ~1~ + a2 + a3 and the strain invariants are given by (2.2), 
where the components of strain (2.1) are taken without quadratic terms. 

Retaining these quadratic terms, we shall determine the principal 

stresses corresponding to displacements Ui = aixi, i.e. initial stresses 

(see Section 1); the stresses ai. will be taken per unit area of the de- 

formed body, by the formulas 

QI' ==(A6 + &.or,)/Ifl +a,> (1 + %)I = fhb + &)(l - %--cc,) (2.5) 

7,' 7 (A9 + 21*&z2)(l --tc3-q). " 33' = (A.0 + qLcQ)(? - dlt ---CL& 

with an accuracy including squares of the principal elongations. In 

contrast to (2.4), the relationship between the principal stresses and 

the elastic potential Q1, taken per unit volume of the body before its 

deformation, is expressed in the non-linear theory of elasticity by 

formulas El 1 

(2.6) 

where A = D(y, ,y2 ,yg 1 / ft(x, ,x2, 3 n > is the ratio of the volume elements 
of the body hefore and after its deformation, and yi is given in the 

case considered by formulas (2.1). Comparing (2.6) and (2.41, and ob- 

serving that, because of (2.1), d/6Ql = 2(1t ai) a/&; we find 

Integrating equations (2.7), we obtain an expression for the elastic 

potential of the first deformation in terms of the principal elongations: 

a, = +(h + 2y)(ai2 + az2 4 ~1~~) + h(=las + aia3+=,a3) (23) 

To find an expression for this potential in terms of invariants of 

the first deformation, we expand the expression CX~ =-$l + e;f - 1, 
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obtained from (2.1), into a series of powers of ei, converging for 

lei 1 < 1. 

Taking only the first two terms of this series, i.e. setting 

tci = $ ei _ $ ei2 (2.9) 

and substituting this expression into (2.81, we obtain 

A h 
c+~J,~~$J,-~J~J, -- s” Js (2.20) 

Ilere the strain invariants are taken from (2.2), and the principal 

components of strain from (2.1). Be cause of the condition 1 ei ( < 1, it 
follows from (2.91, that the elastic potential (2.10) and the formulas 

(2.5) corresponding to it are applicable to such deformations of iso- 

tropic bodies, for which the principal elongations OIi < 0.375. 

The elastic potential (2.10) may be compared with the one of the 

” five-constant” theory developed by Murnaghan [ 3,4 1 : 

UY = + (A + 2t*) =I - &E,, + q + “&IEII + yII (2.11) 

Here 1, I, n are the new (in addition to h, fl) elastic constants, 

which should be determined from experiments or theoretical considerations. 

The elastic potential (2.11) is written in terms of Eulerian variables, 

i.e. the coordinates y of the points of the body after its deformation 

are taken as independent variables, in contrast to formulas (1.1). The 

invariants of strain cI, cll , cm are also taken in a form different 

from the one adopted by us in (2.3). It can be shown that if written in 

terms of Lagrangian variables (the independent variables are the co- 

ordinates xi of the points of the body before its deformation) and in 

terms of invariants given by (2.31, the elastic potential (2.11) will be: 

Comparing this expression with (2.10). we find 

I = 3/J + 31*, m = - (3h + 9p.), n = 9p (2.13) 

Consequent 1 y, with such values of the elastic constants, the elastic 

potential of the five-constant theory coincides with ours. It is of 

interest to note that N.V. Zvolinskii and P.M. Riz 15 I basing their work 

on different considerations, give values of the elastic constants in the 

five-constant theory which coincide with (2.13). 

3. Application of deformation 

Assume that the first elastic deformation is followed by a second, 
also elastic one. Designating, as in section 1, by fik and gik the com- 

ponents of the second and total strain, we find the following components 

from (1.31, taking into account (1.11, (1.2) and (2.1) 
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gii = Zai + c(i2 + (1 + Ni)'/ii, gik = (1 + xi) (I + ak) jik (3.1) 

Substituting into (2.10) in place of the invariants of the first de- 

formation the invariants of the total deformation, obtained from (2.3) 

Ly the exchange of eik to gik, and dividing the result by (1 +- a,) 

(1 + a,) (1 + all), we arrive at the elastic potential of the total de- 

formation referred to the initial state 

The invariants of the first deformation are denoted by primes, 

K, = 

K,, K3; L,, L,; M2, $; N2 t N3 are derived from K,, L,, AI,, N, respect- 

ively by a circular permutation of subscripts of ~1 and e. 

To simplify the calculations, we omitted the terms higher than those 

of the second power in f,i.e. we considered the second deformation as 

being small; therefore, f in (3.2) 1 slould be taken from (1.2) without 

the quadratic terms. ct, * is the elastic potential of the first deforma- 

tion referred, as alsolother terms in (3.2), to a unit volume in the 

initial state of the body. aI2 expresses, as can Le shown, the "partial" 

work of the initial stresses in the second deformation. QP2' representing 

the elastic potential of the second deformation, also appears as the 

elastic potential of an orthotropic body [h 1, whose principal directions 

of elasticity coincide with the principal axes of the first deformation. 

This indicates that, Ly the application of a second deformation, the 

Lody deforms as an orthotropic one; that is, as a result of the first 

deformation it becomes orthotropic. Therefore, the stresses produced Ly 

displacements Vi of the second deformation (seconlary stresses)may Le 

taken from the corresponding solutions of the theory of elasticity of 

anisotropic bodies. It will Le our problem to find expressions for the 
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elastic constants of this orthotropic body. 

Remark I. If the first deformation were not homogeneous and pure, 

then the deformed body would be orthotropic at each of its points (i.e. 

in the infinitely small vicinity of such points); however, the principal 

directions of elasticity and the elastic constants at various points of 

the body. in general, would be different. The principal elongations cli 

would be functions of the coordinates of the points of the body, and the 

displacements ui : clixi would define the deformation at point (xi), only 

with an accuracy within a rotation of its vicinity around this point. 

Remark 2. The statement, that a2 represents the elastic potential of 

the second deformation needs an explanation. During the second deforma- 

tion, besides the forces producing it, there are also present the forces 

which produced the first deformation (we shall call them continuously 

acting forces). Therefore, to the density of the energy of deformation - - 

to the elastic potential @ (3.2) - - should be added the density y of 

that potential energy which corresponds to those forces ( that is the 

mechanical energy of the system associated with the first deformation); 

and the secondary stresses are expressed as derivatives of the sum @+ y 

with respect to components f of the second deformation. However, it is 

possible to show that 

a (0 --;- y’) a (CD,,* -+ ‘Di2 -;- CD? + Y) &D* ______ _. 
afik afik =afik (X.?) 

For this reason a2 was called the elastic potential of the second de- 

formation. Indeed, as it was shown, a12 represents the specific work of 

initial stresses in the second deformation. Since this work is equal to 

the specific work of the continuously acting forces in this same 

deformation, so the density of the potential energy y corresponding to 

them, decreases if this work is positive, and increases if the work is 

negative. Assuming y as being equal to zero in the initial state (with- 

out loss of generality), we obtain y = - Q12, from which equation (3.3) 

follows. The absence, in the sum @ + Y, as a consequence of Y = - Q12, 

of first power terms in f, expresses the stability of the initial state 

of the body relative to deformation. 

If the second deformation is not small, then Y+ - Q12. Not having 

the possibility of entering into details, we merely mention that in such 

cases we can expand Y into power series of the components f of the 

second deformation. Then, in the SUB @ + Y, due to stability of the 

initial state,0i2 will reduce by the first-power terms of f entering into 

Y, and terms with higher powers of f are added to ($2. Moreover, the 

additional terms in az2’ appear also in (3.2). since f cannot be taken 
from (1.2) without quadratic terms, as it happened in the derivation of 

(3.2). 

Remark 3. The question relating to the type of anisotropy, developed 
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as a consequence of an elastic deformation, was considered apparently 

first by Voigt [13 1. He came to the conclusion that after a large de- 

formation (to which subsequently a small one is applied) the body attains 

an elastic symmetry of a rhombic crystal if the first deformation is 

homogeneous, and of a hexagonal crystal if it is a uni-axial elongation. 

However, making use of the five-constant elastic potential suggested by 

him, Voigt takes the components of the deformation (which he does not 

consider small) without the quadratic terms, and the relation between the 

elastic potential and the stresses taken on the same form, as in the 

linear theory of elasticity. In our deductions above, we arrived by a 

different method to a result qualitatively equivalent to Voigt’s con- 

clusion, if it is taken into account that the elastic potential and the 

generalized Hooke’s.law for rhombic and hexagonal crystals, have the same 

form as for the orthotropic and transversly isotropic bodies, respectively. 

4. Elastic constants of an orthotropic body 

Hooke’s law for an orthotropic body, 

211 = $(4lfU + 4*f22 + 43f33), 323 = 44f2.1 (4.1) 

=22 = + G4,2f,, + A22f22 + A,,f,,), 531 = A,,f,, 

‘33 = + tA13f11 + A23f22 + A,,/,,), 112 = 4dl2 

contains the lmoduli of elasticity” Aik, which can be expressed in terms 

of the “components of strain” a;k 
A 
11 

= ma88 - a2s2 

A ’ 
AZ3 = & _ al@19 -pa19 ) 

h4 = & (4.2) 

A a38w - ala2 
22 = A ’ 

AS1 = A,, = a12u23 ;a18a22 , A,, = -& 

A 
33 

= a11a22-aE!2 
A ’ 

Al2 = A,, = a81a82;a32a88 , A,, = -& 

A = a11a22a33 - 2a12a13a23 - a122a33 - a132a22 - a232a11 

As is known, the coefficients of deformation are related to the so- 

called “technical constants” of an orthotropic body by the relation [7 1 
1 1 1 1 1 

all = E I a22 = E y ‘33 = E; ) a44 = g , 
- 

a6s = G13 t a99 = & (4.3) 

v21 Vl? 
al2 = - bT = - -; , 

v91 

a13 = -z = - 
v19 V82 v29 

bl Ey' 
a23 = -Es = - hT 

where Ei, Cik,Vik are Young’ s modul i, shear moduli and Poisson’s ratios, 

respectively. Introducing (4.1) in the well-known expression for the 

elastic potential, we obtain 

a = f (ollell + 622e22 + 033e33 -I- c23e23 + 031e31 i- 312612) (4.4) 

after replacing in it eii) eik by ~fii, fik. comparing the derived equa- 

tion with Q ih (3.21, we obtain an expression for the moduli of 
elasticity aik in terms of A, CL, a, and further after a substitution 
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in terms of EO’VO,ai, Substituting the derived expression for the moduli 

of elasticity Aik and expressions (4.3) into (4.21, we obtain equations, 

from which the technical constants of an orthotropic body may be ex- 

pressed in terms of Young's modulus E, and Poisson's ratio vo, of an 

initially isotropic body, and by its principal elongations in a homo- 

geneous deformation. Onitting all intermediate calculations, we give 

the expressions for these technical constants with an accuracy within 

the second power of elongations Cli 

+ il fvg)(l -2vo) a2a3 1 
(4.6) 

(E, and E3 are obtained by cyclic permutation of subscripts of al; 

v12 = yo 1 
‘1 + (1 + yo) aI - 3 - 9~tf~~v~,f 4v03 f42 + “-:‘2 ~04vO* a,” _ 

4vo (1 - vo) 2 1 - i--v, a3-. - 4vo -t_ 3voa 1 - 2v, ala2 + -- ‘i _ 2vo + 4v,a,as] (4.7) 

6.J andv are obtained by cyclic permutation; vkiare obtained from Vik 

by% intezihange of subscripts i and k; 

C&2 = C, I- =a8 - 2(1 _12voJ (a,+ a2) --~~~~~J$ (ai2 + a22) + 
C 

2”- 3v 
+ 2 (1 - 2v0,) as2 

2(1 
- -i* ala2 + $- (XI + a21 a 

0 1 
(4.8) 

s 

ffor G 23 and GX 
again cyclic permutation has to be applied), 

5. Special cases 

In formulas expressing the initial stresses (2.5), and in formulas 

(4.6) to (4.8) defining the elastic constants of an orthotropic body, 

produced from an isotropic body after the first homogeneous deformation, 

the principal elongations 'i in this deformation are presumed‘to be in- 

dependent. Cases are given below, when they are connected by some 

relationships. 

1. &drostatic tension OF compression. In this case cll = C$ = CI = 01; 

a > 0 for tension. As in equations (4.61 to (4.8) all quantities 4,Gik 
and Vik differ one from another only by the arrangement of subscripts 

of a, Young's moduli, shear moduli and Poisson's ratios of an ortho- 

tropic body will be alike, that is the isotropy of the body will not be 

disturbed by a hydrostatic tension or compression. This deformation will 
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merely alter numerically the original values of Young’s modulus and 
Poisson’s ratio, which they had before deformation and which will be now 

Y = y. [l + (1 + vo)o: + f (7 + So + 2v02) a21 

‘Ihe initial stresses from (2.5) will be 

(5.1) 

31 ‘=;*‘_ 2 -53 ‘=p=3ka-_ka* 

where k = (3X + 2~ ) / 3 is the bulk modulus. 
(5.2) 

2. hiaxial extension or compression. An isotropic, prismatic bar, 
after being extended or compressed (CX < Of, becomes transversely iso- 
tropic with the planes of isotropy perpendicular to its axis. Assuming 
that the latter coincides with the axis of the coordinate 3 and by 
putting (X3 = a, fX1 = a* = - ~~01, we derive from (4.6) to (4.8) the 
values of its technical constants (in the notation, adopted in reference 
II7 I>: 

E=E,=E,= E, C l-(1 +'v:)a+ 
2 - 5vo - 15v02 + 25v,~ + 2v$ - 4vo6 

2 (1 - Zv*) 
(x2 1 

v = VpJ = Y. i ‘i- v. (1 + vo) a - V@ (1 + vo) (8 - 13 v, - 2v,a + 4v08) 

2V - 2vo) 

as 
I 

E’ = E3 = E, 
[ 

1 + 2v,a - I5 ~~~~~0~*vo3 a2] (5.3j 

v’ = Y33 = v31 = v. 11 + (1 + Qf.x- +-(3-5vo-3v,2)a2j 

G’ =: SC 

The initial stresses from (2.5) will be 

a1 ‘SO 2’ = 0, (33’ = .&a (1 + 2~4 (5.4) 

3. Pure shear. If the principal elongations ~1~ and a2 satisfy the 
condition (1 + CI~) (1 + o/* 1 = 1 and ~1~ = 0, then a deformation field of 
pure shear will be produced relative to axes 1,2,3. Suppose that CM- 
pression takes place parallel to axis 1 and extension parallel to axis 2. 
We put 16 3 

a1 =secp-- tgp-1, a,=sec/3+tm$-1 (5.5) 

These expressions for principal elongations satisfy the set condition. 
Letting tan @ = (a, - aI) / 2 = s/2, we derive 

-.- 
a2=~1/4+s3+$s-~~$~(1+~s) ’ ’ 

with an accuracy to s2 inclusively. If a plate with its edges parallel 

to the axes 1 and 2 is subjected to pure shear, then it becomes ortho- 
tropic and its technical constants are determined by substituting the 
value of a previously derived into expressions (4.6) to (4.8). Among 
these technical constants we present the following: 
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.& = E,[j-+- 7-1&,+3v,,~--2v,,~+&,* a 

4 fi - 24 G+ vof 
s 

1 

,?& = E, [I + !+” s - ’ - l;;i~3&;“;o”,f 2v04 $1 
c 

VI = ‘/‘11cJ = vg 
[ 
1--W?!+- 3 - 6~4” t_ 2v,+ - vo8 

2 2 (1 - 2v,) s2 1 (5.7) 

Y2 = vzl = Y@ 
t 
1 + 9 s- 

3 - 6v, + 2v+ vo3 s2 

2($ - 2vo) 1 

In above formulas s = ~1~ - dl The initial stresses, by (2.51, will be 

sir = - F*s + T 52, Tgt = p*9 + - w-3iLS? a 
4 

, SB’=; -& s.2 (5.8) 

We note that on axes 1’) 2’,, 3, produced by the rotation of axes 1, 2 
through sn angle 4 = n/4 7 /3/2 around the axis 3 (see Fig.21, the 
principal elongations (5.6) define the deformation field of simple shear, 
and s is the mmagnitudew of this shear, i.e. the displacement of any 
point (Xi), referred to axes 1’) 2’,* 3, will be Ui’ = SX~‘, u2’ = u3 = 0. 

Fig. 2. 

4. State of plane stress. For a7’ = 0 

a3 = -+F(oL1 -!- 4 = - & (aI f a2) (5.9) 

The initial stresses different from zero will be, from (2.9) 

6. Some applications 

1. Torsion of an extended or compressed bar. Let the relative elonga- 
tion of the axis of the bar, coinciding with the coordinate axis 3, be 
equal to c1. The initial stresses may be found from (5.4). The bar will 
be twisted as a transversely isotropic one, with the elastic constants 
from (5.31, due to the action of a tensile force p = sEoa(l + 2 U,CX); 
where s is the area of the cross-section after elongation. However, in 
the case of a transversely isotropic rod, in first approximation, the 
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tensile force does not affect the magnitude and the distribution of 
shear stresses, and the latter is equal to the one in an isotropic bar, 
for given twisting moment M, [? f. Therefore, the non-vanishing 
secondary stresses in a bar, whose cross-section before elongation is 
bounded, for example, by a contour x12/a2 + x22/b2 = 1, will be 

,I 
3 

211/1,X~ 
23 = nGPF(1-voa)3 

zz s (1 + 37,~ + 6$a2) 

It is taken into account here that after elongation of the bar, its 
cross-section will be bounded by an ellipse y,:/[ a2(1 - SJ~E~‘] + 
y,‘/[ b*(l - v,& I =: 1. The torsional rigidity of an extended or com- 
pressed bar will be 

where G” is given by (5.3 1 and C, o denotes the rigidity of a bar that is 
neither elongated nor compressed. 

2. Bending of an extended or compressed plate. A rectangular aniso- 
tropic plate, extended (compressed) in two directions parallel ta its 
edges, will bend under an arbitrary, normal load, as an orthotropic 
plate with its principal directions parallel to the edges, under the 
action of forces pI = ol’)h, p2 = 02’h, uniformly distributed along these 
edges, 
and the 

and taken per unit length, where aI’ and u2’ are given by (S.lO), 
thickness of the plate from (5.9) is 

(6.3) 

if ho is the thickness of the plate before elongation, and otI and ~1~ are 
its relative elongations. ‘lhe theory of bending of orthotropic plates is 
well developed (see references E 8-11 3 ). The bending and torsional 
rigidities, required for the analysis of the plate by this theory, 

D, = E,h” j 12 (I - -QY& ;f), = I:‘&” j $2 (I - YzV*) 

& = Gh3 / 12, I.$ = D,rl -i- 2Dk (6.4) 

are found with the aid of formulas &.6) to (4.8), putting in them 

y12 = VI% l +x = ~2, t&z = G, a3 = - *so (aI -+ ap) /(I - vOf (6.5) 

u, = f&$33 P +2&j-- vrJ2 15 - WV* i_ 76Y*” - 2&Q 
12(1 - vo2) i-v, Oc2 - ---zg"=Jy)(1 -v# a12+ 

-L 2 - 3vo - vo2 - 7v,3 + 4v,p 
~- a22 - 

v1) - 1ovo2 + 24v03 - lov,4 

2 (1 - 2v,) (1 -vo)2 (1 - ho) (1 - vo)2 alaa 



Deforwation fffiisofropy 101 

(for D, it is necessary to interchange the subscripts 1 and 21, 

9 - 34v, + 29vg + lov”~ 
(Q + f%“) - 

2 - t(v, + 4v,2+ 9vg - 
4(1 - 2v,) (1 - v# (1 - 2vo) (2 - vop ala2 1 

4,~oho3 (6.6) 
D,v, = 

12 (1 - vga) 
1 - & (Q(~ + 4 - 

3 - 12v,+ 16v&- 2vp 1 - 3v, -j- 3vo” -c 4vg - 
2 fl - &) (1 - yo)2 @I2 + Q2) - (1 - ZV,) (1 - v,)Z a1=2 1 

If the plate is stretched or compressed only in one direction, then 
it will bend as a tranversely isutropic one, with planes of isotropy per- 
pendicular to the direction of extension, under longitudinal forces, 
p = EOh a(1 i- 2 ~,a), acting on two opposite edges, [see (5.4)1, In this, 
a is the relative elongation of the plate; and h = h,(l- ~,a), if ho is 
the thickness of the plate before extension, ‘Ihe initial stress different 
from zero is 

Or = E,a (1 + ~Y,CX) (6.7) 

The rigidities necessary for the bending analysis of the plate, may 
be found by substitution of by = it, az = - vo@, into (6.5), (6.61, to 
obtain 

(6.8) 

9 - 24vo+ 13v02 + 10vos 

D&f = 
Eoho* 3vo .-Iho2 + 14v,%-- 6vo4+ 2vob 

- - 
oc4 

12(1 - voY -[ YO 2v02a 2(1 - 2v,)(l -VI)) 3 

3. Bending of a plate after application of shear. At first we assume 
that bending is applied to a plate subsequently to pure shear. Let the 
edges of the plate be parallel to axes 1, 2 in Fig.2, that is in the 

principaf directions for pure shear, The initial stresses are determined 
from (5.8), During a subsequent application of normal loading, the plate 
will bend as an orthotropic one, with the principal directions, parallel 
to its edges subjected to arbitrary forces a,‘h and o ‘h, acting parallel 
to these edges, where ol’ and g2’ are taken from (5.8 3 . The quantities, 
necessary for the determination of rigidities are found by substituting 
expressions (5.7) into (6.4): 

D, = 
Bob” 

1.111 [I _L+- 7 - 24vo+ 26v02- 7v03 

12(1 - voq 4fl - 2vo) (1 - vo) 

s2 

I 
(s = zp - %I) 

D,= Eoh3 [1+++ 
7 - 24vo+ 26~~2 - 7vos 

22(1 -v&q 4 (1 - 2vd (f --0) 

s2 

1 
(Ml) 
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Now let us assume that two edges of a rectangular plate in a deforma- 
tion field of pure shear, coincide with axes l’, 2’, rotated relative to 

the principal directions 1, 2 of pure shear by the angle I/J = % R - % /3 

and tan /3 = % s, where s is the magnitude of simple she.ar (see Fig.2). 

‘Ihe plate will undergo pure shear (see the remark at the end of Section 

5). The stresses corresponding to this shear are found by formulas 

a*r’ = 5,’ Cos” ‘9 j- ~7~’ sin2 ‘9 = $ (>\ + t*) ~2 

a2*’ = q sin2 3 + ~~‘~0s~ p = $(j, + p) ~2 (6.10) 

cia’ = (Oa’ - Jl’) sin y cos q3 = p.s 

where u ‘, u ’ are taken from (5.8). Formulas (6.10) indicate that the 

deformakion if pure shear cannot be caused by shear forces only; if it 

is to be significant, also normal forces should be applied to the edges 

of the plate, proportional to the square of the magnitude of shear, s 

(regarding the insufficiency of shear forces, see, for example, Green 

[ 12 I ). The rigidities of the plate, relative to axes 1, 2, are given by 

formulas (6.9). D,,‘, II,,‘, necessary for the determination of the bend- 

ing rigidity, the torsional rigidity D,,’ and the relative Poisson’s 

ratio y1 = DJD,,‘, as well as the secondary rigidities D,,‘, D,,‘, 
absent for axes 1, 2, are determined by formulas [ 8 1 

D,,’ = D, co9 9 + 20, sin2 ? cos2 C+I + D, sin4 ‘p 

D22’ = D, sin4 y + 20, sin2 ? cos2 y + D, cos4 y (6.11) 

Dss’ = Dk + (Dl + D, - 20,) sin2 ‘9 cos2 cp 

Yi = &- [Dzvr + (Dr + D, - 2Da) sin2 ‘9 cos2 ‘21 

Dla’ = f (D, sin2 ? - D, cos2 ‘9 + D, cos 2~) sin 2~ 

Dz6’ = $ (D, cos2 p - D, sin2 cp - D, cos 2~) sin 2p 

Substituting the expressions (6.9) and 4 = ?4 n - % p into (6.11), we 

obtain the rigidities, required for the analysis of a plate in bending: 

Dll’ = -@Oh3 [ l- ;“(;_~o);~;;l s2] 
12 (1 - vo2) 

Dt2’ = -~ 12 (yEvo2) [, __ 2 - 7vo + f+Jo* - 2v03 
2 (1 - 2v,) (1 - vg) 

s2 1 
&’ = ‘oh3 [ + .y _ 7 - 26vo + 33vo?--14v03 

12(1 -vo2) 2 (1 - 2%)) (1 - vg) 
S2 1 (6.12) 

y1 = v. - f (1 - vJ2 9, D,,’ = D,,’ = 
&I13 1 + vo 

12(1-vo2) -4 s 
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To check the calculations, we may use the relationships derived from 
(6.11) 

Dn' + 022' + 201,' = D, + D, + 2&v, 

D,,'- D12' = Dk - D,v, 
(6.13) 
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